Phase transitions of the anisotropic Ashkin-Teller model on a family of diamond-type hierarchical lattices

Jian-Xin Le ${ }^{2,3, *}$ and Z. R. Yang ${ }^{1,2}$
${ }^{1}$ CCAST (World Laboratory), P. O. Box 8730, Beijing 100080, China
${ }^{2}$ Department of Physics and Institute of Theoretical Physics, Beijing Normal University, Beijing 100875, China
${ }^{3}$ Department of Physics, Jiangxi Normal University, Nanchang 330027, China

(Received 2 June 2003; published 17 December 2003)

Abstract

The phase transitions of the anisotropic Ashkin-Teller model on a family of diamond-type hierarchical lattices is studied by means of the transfer-matrix method and the real-space renormalization-group transformation. We find that the phase diagram, for the ferromagnetic case, consists of five phases, i.e., the fully disordered paramagnetic phase P, the fully ordered ferromagnetic phase F, and three partially ordered ferromagnetic phases F_{s}, F_{σ}, and $F_{s \sigma}$, as well as ten nontrivial fixed points. The correlation length critical exponents and the crossover exponents are also calculated. In addition, we also investigate the variations of the critical exponents with the fractal dimension d_{f}, the number of branches m, and the number of bonds per branch b of the generator of the family of diamond-type hierarchical lattices. Finally we give a brief discussion about universality.

DOI: 10.1103/PhysRevE. 68.066105
PACS number(s): 05.50.+q, 75.10.Hk, 64.60.Ak

I. INTRODUCTION

The Ashkin-Teller (AT) model [1] is a generalization of the Ising model to a four-component system. In this case, each site of a lattice is occupied by one of the four different kinds of atoms A, B, C, or D. Two nearest-neighbor atoms interact with an energy; ϵ_{0} for $A-A, B-B, C-C, D$ $-D ; \epsilon_{1}$ for $A-B, C-D ; \epsilon_{2}$ for $A-C, B-D$; and ϵ_{3} for $A-D, B-C$. Fan [2] associated each lattice site i with two spin variables s_{i} and σ_{i} and represented the four states A, B, C, and D by the spin configurations $\left(s_{i}, \sigma_{i}\right):(+,+)$, $(+,-),(-,+)$, and $(-,-)$, correspondingly. Thus the AT model can be expressed in terms of the Ising spins, the Hamiltonian for the magnetic system being

$$
\begin{equation*}
H=-\sum_{\langle i j\rangle}\left(J_{s} s_{i} s_{j}+J_{\sigma} \sigma_{i} \sigma_{j}+J_{4} s_{i} \sigma_{i} s_{j} \sigma_{j}+J_{0}\right), \tag{1}
\end{equation*}
$$

where the sum $\sum_{\langle i j\rangle}$ runs over all the nearest-neighbor pairs of spins. In this sense, the AT model may be considered to be two superposed Ising models described by two spin variables s_{i} and σ_{i}, respectively. J_{s} and J_{σ} represent the two-spin nearest-neighbor interaction strength within the two Ising models, respectively. In addition, the different Ising models are coupled by a four-spin interaction with strength J_{4}. If $J_{s}=J_{\sigma}$, this corresponds to the isotropic case where the two Ising systems are identical with each other.

Wegner [3] has shown that the AT model is equivalent to a staggered eight-vertex model, which remains unsolved exactly. In two dimensions, the phase diagram for the isotropic AT model has been studied extensively by means of experimental technique [4], Monte Carlo simulations [5-8], and various theoretical methods [9-13]. It can be found that the phase diagram has a very rich structure, containing one para-

[^0]magnetic phase, one ferromagnetic phase, and one partially ordered phase, which are separated by two Ising-type critical lines and a critical line of continuously varying exponents known exactly [14]. Ditzian and his collaborators [15] found that for the isotropic AT model, the phase diagram for the three-dimensional system is much richer than, and quite different from, that in two dimensions. There appear some firstorder phase transitions and continuous phase transitions, even an $X Y$-like transition and a Heisenberg-like multicritical point. With respect to the anisotropic AT model, in which the two Ising systems are not identical with each other, the phase diagram, however, is not so clear. Wu and Lin [16] have employed exact duality relations to determine the phase diagram for the anisotropic AT model on the square lattice. In addition, some approaches, such as renormalization-group transforamtion [17], finite-size-scaling [18], mean-field approximation, and Monte Carlo simulations [19], have been applied to the investigations of the phase diagram for the anisotropic AT model as well.

So far, most of the research on the AT model has been focused on the translational symmetry lattices, i.e., Bravais lattices, whereas much less attention has been paid to the study of this model on the fractal lattices, e.g., the hierarchical lattices. As noted by Berker and Ostlund [20], certain renormalization-group transformations, which are only approximate on the translational symmetry lattices, become exact on the hierarchical lattices. On the other hand, the hierarchical lattices are highly inhomogeneous [21], and they may provide insights into other low-symmetry problems such as random magnets, surfaces, etc. Therefore, much work on the hierarchical lattices has been motivated recently [22-25]. It is worthwhile to mention that Bezerra et al. [26] have investigated the anisotropic AT model on a kind of selfdual hierarchical lattice and obtained the phase diagram as well as the critical exponents.

In this paper, using the transfer-matrix method and the real-space renormalization-group transformation, we study the phase transitions of the anisotropic Ashkin-Teller model

FIG. 1. First two stages of the constructions of a few members of the family of the diamond-type hierarchical lattices.
on a family of diamond-type hierarchical lattices. It can be found that the phase diagram, for the ferromagnetic case, consists of five phases, i.e., the fully disordered paramagnetic phase P, the fully ordered ferromagnetic phase F, and three partially ordered ferromagnetic phases F_{s}, F_{σ}, and $F_{s \sigma}$, as well as ten nontrivial fixed points. The correlation length critical exponents and the crossover exponents are also calculated. In addition, we also investigate the variations of the critical exponents with the fractal dimension and other geometrical parameters of the lattices. In the following section, the recursion relations of the renormalization-group transformation are obtained. In Sec. III, the fixed points and the phase diagrams are presented. The critical exponents are calculated in Sec. IV. Finally, we give a brief discussion and conclusion in Sec. V.

II. THE RECURSION RELATIONS OF RENORMALIZATION-GROUP TRANSFORMATION

As we know, the hierarchical lattices can be constructed in an iterative manner. Herein we shall restrict ourselves to a family of diamond-type hierarchical lattices [27,28], the constructions of which can be realized through iterative decoration of a two-point bond by a generator, which has two vertices joined by m branches of b bonds. Figure 1 shows the constructions of a few members of the family. For these structures, one can employ a well-defined fractal dimension d_{f} to describe their geometrical features, i.e.,

$$
\begin{equation*}
d_{f}=\frac{\ln (m b)}{\ln b}=1+\frac{\ln m}{\ln b}, \tag{2}
\end{equation*}
$$

where m and b denote the number of branches, and the number of bonds per branch of the generator of the hierarchical lattice, respectively.

For the reasons that the term $\Sigma_{\langle i j\rangle} J_{0}$ in expression (1) is irrelevant to the spins s and σ, and only contributes to the nonsingular part of the free energy, one does not need to consider it in the process of the renormalization-group transformation. Thus, the effective Hamiltonian \mathcal{H} for the anisotropic AT model can be expressed as

$$
\begin{equation*}
\mathcal{H}=\sum_{\langle i j\rangle}\left(K_{s} s_{i} s_{j}+K_{\sigma} \sigma_{i} \sigma_{j}+K_{4} s_{i} \sigma_{i} s_{j} \sigma_{j}\right), \tag{3}
\end{equation*}
$$

where $K_{s}=\beta J_{s}, K_{\sigma}=\beta J_{\sigma}, K_{4}=\beta J_{4}, \beta=1 /\left(k_{B} T\right), k_{B}$ is the Boltzmann's constant, T is the absolute temperature, and the sum $\Sigma_{\langle i j\rangle}$ runs over all the nearest-neighbor pairs of spins. The partition function is written as

$$
\begin{equation*}
Z\left(K_{s}, K_{\sigma}, K_{4}\right)=\sum_{\{s, \sigma\}} \exp (\mathcal{H}) \tag{4}
\end{equation*}
$$

where the summation $\Sigma_{\{s, \sigma\}}$ is over the values +1 and -1 of all site spins on the lattice.

In this case, the renormalization-group transformation requires

$$
\begin{align*}
A \exp \left(\mathcal{H}_{1,2}^{\prime}\right)= & \sum_{\left\{s_{3}, \sigma_{3}\right\}} \sum_{\left\{s_{4}, \sigma_{4}\right\}} \ldots \\
& \times \sum_{\left\{s_{m(b-1)+2}, \sigma_{m(b-1)+2}\right\}} \exp \left(\mathcal{H}_{1,2, \ldots, m(b-1)+2}\right), \tag{5}
\end{align*}
$$

where $\mathcal{H}_{1,2, \ldots, m(b-1)+2}$ denotes the effective Hamiltonian of the generator of the diamond-type hierarchical lattice, $\mathcal{H}_{1,2}^{\prime}$ represents the effective Hamiltonian of the two-vertex bond after the renormalization-group transformation is performed, the subscripts 1 and 2 stand for the two vertices of the generator, the others $3,4, \ldots, m(b-1)+2$ are the internal sites of the generator, $m(b-1)$ and $m(b-1)+2$ are the number of the internal sites, and the number of the total sites of the generator, respectively, A is an additive constant produced after the transformation, and the summations are over all values of all internal site spins of the generator of the diamond-type hierarchical lattice.

By means of the transfer-matrix method, we can decimate all internal site spins on the hierarchical lattice. The elements of the transfer-matrix Q are defined as

$$
\begin{equation*}
\left\langle\sigma_{i}, s_{i}\right| Q\left|s_{j}, \sigma_{j}\right\rangle=\exp \left(K_{s} s_{i} s_{j}+K_{\sigma} \sigma_{i} \sigma_{j}+K_{4} s_{i} \sigma_{i} s_{j} \sigma_{j}\right) \tag{6}
\end{equation*}
$$

Thus Eq. (5) becomes

$$
\begin{equation*}
A\left\langle\sigma_{1}, s_{1}\right| Q^{\prime}\left|s_{2}, \sigma_{2}\right\rangle=\left(\left\langle\sigma_{1}, s_{1}\right| Q^{b}\left|s_{2}, \sigma_{2}\right\rangle\right)^{m} \tag{7}
\end{equation*}
$$

From Eq. (7), one can get that

$$
\begin{equation*}
A_{i} \exp \left(K_{s}^{(i-1)}+K_{\sigma}^{(i-1)}+K_{4}^{(i-1)}\right)=\frac{1}{4^{m}}\left(q_{1}^{b}+q_{2}^{b}+q_{3}^{b}+q_{4}^{b}\right)^{m} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
A_{i} \exp \left(K_{s}^{(i-1)}-K_{\sigma}^{(i-1)}-K_{4}^{(i-1)}\right)=\frac{1}{4^{m}}\left(q_{1}^{b}-q_{2}^{b}-q_{3}^{b}+q_{4}^{b}\right)^{m} \tag{9}
\end{equation*}
$$

$$
\begin{gather*}
A_{i} \exp \left(-K_{s}^{(i-1)}+K_{\sigma}^{(i-1)}-K_{4}^{(i-1)}\right) \\
=\frac{1}{4^{m}}\left(-q_{1}^{b}+q_{2}^{b}-q_{3}^{b}+q_{4}^{b}\right)^{m} \tag{10}
\end{gather*}
$$

and

$$
\begin{gather*}
A_{i} \exp \left(-K_{s}^{(i-1)}-K_{\sigma}^{(i-1)}+K_{4}^{(i-1)}\right) \\
\quad=\frac{1}{4^{m}}\left(-q_{1}^{b}-q_{2}^{b}+q_{3}^{b}+q_{4}^{b}\right)^{m} \tag{11}
\end{gather*}
$$

where

$$
\begin{align*}
q_{1}= & \exp \left(K_{s}^{(i)}+K_{\sigma}^{(i)}+K_{4}^{(i)}\right)+\exp \left(K_{s}^{(i)}-K_{\sigma}^{(i)}-K_{4}^{(i)}\right) \\
& -\exp \left(-K_{s}^{(i)}+K_{\sigma}^{(i)}-K_{4}^{(i)}\right) \\
& -\exp \left(-K_{s}^{(i)}-K_{\sigma}^{(i)}+K_{4}^{(i)}\right), \tag{12}\\
q_{2}= & \exp \left(K_{s}^{(i)}+K_{\sigma}^{(i)}+K_{4}^{(i)}\right)-\exp \left(K_{s}^{(i)}-K_{\sigma}^{(i)}-K_{4}^{(i)}\right) \\
& +\exp \left(-K_{s}^{(i)}+K_{\sigma}^{(i)}-K_{4}^{(i)}\right) \\
& -\exp \left(-K_{s}^{(i)}-K_{\sigma}^{(i)}+K_{4}^{(i)}\right), \tag{13}\\
q_{3}= & \exp \left(K_{s}^{(i)}+K_{\sigma}^{(i)}+K_{4}^{(i)}\right)-\exp \left(K_{s}^{(i)}-K_{\sigma}^{(i)}-K_{4}^{(i)}\right) \\
& -\exp \left(-K_{s}^{(i)}+K_{\sigma}^{(i)}-K_{4}^{(i)}\right) \\
& +\exp \left(-K_{s}^{(i)}-K_{\sigma}^{(i)}+K_{4}^{(i)}\right), \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
q_{4}= & \exp \left(K_{s}^{(i)}+K_{\sigma}^{(i)}+K_{4}^{(i)}\right)+\exp \left(K_{s}^{(i)}-K_{\sigma}^{(i)}-K_{4}^{(i)}\right) \\
& +\exp \left(-K_{s}^{(i)}+K_{\sigma}^{(i)}-K_{4}^{(i)}\right) \\
& +\exp \left(-K_{s}^{(i)}-K_{\sigma}^{(i)}+K_{4}^{(i)}\right) \tag{15}
\end{align*}
$$

in which A_{i} is an additive constant associated with the i th decimation procedure and $K_{s}^{(i)}, K_{\sigma}^{(i)}$, and $K_{4}^{(i)}$ are the renormalized interaction parameters. From Eqs. (8)-(11), one can obtain that

$$
\begin{align*}
A_{i}= & \frac{1}{4^{m}}\left(q_{1}^{b}+q_{2}^{b}+q_{3}^{b}+q_{4}^{b}\right)^{(m / 4)}\left(q_{1}^{b}-q_{2}^{b}-q_{3}^{b}+q_{4}^{b}\right)^{(m / 4)} \\
& \times\left(-q_{1}^{b}+q_{2}^{b}-q_{3}^{b}+q_{4}^{b}\right)^{(m / 4)}\left(-q_{1}^{b}-q_{2}^{b}+q_{3}^{b}+q_{4}^{b}\right)^{(m / 4)}, \tag{16}
\end{align*}
$$

$$
\begin{equation*}
K_{s}^{(i-1)}=\frac{m}{4} \ln \frac{\left(q_{1}^{b}+q_{2}^{b}+q_{3}^{b}+q_{4}^{b}\right)\left(q_{1}^{b}-q_{2}^{b}-q_{3}^{b}+q_{4}^{b}\right)}{\left(-q_{1}^{b}+q_{2}^{b}-q_{3}^{b}+q_{4}^{b}\right)\left(-q_{1}^{b}-q_{2}^{b}+q_{3}^{b}+q_{4}^{b}\right)}, \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
K_{\sigma}^{(i-1)}=\frac{m}{4} \ln \frac{\left(q_{1}^{b}+q_{2}^{b}+q_{3}^{b}+q_{4}^{b}\right)\left(-q_{1}^{b}+q_{2}^{b}-q_{3}^{b}+q_{4}^{b}\right)}{\left(q_{1}^{b}-q_{2}^{b}-q_{3}^{b}+q_{4}^{b}\right)\left(-q_{1}^{b}-q_{2}^{b}+q_{3}^{b}+q_{4}^{b}\right)}, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{4}^{(i-1)}=\frac{m}{4} \ln \frac{\left(q_{1}^{b}+q_{2}^{b}+q_{3}^{b}+q_{4}^{b}\right)\left(-q_{1}^{b}-q_{2}^{b}+q_{3}^{b}+q_{4}^{b}\right)}{\left(q_{1}^{b}-q_{2}^{b}-q_{3}^{b}+q_{4}^{b}\right)\left(-q_{1}^{b}+q_{2}^{b}-q_{3}^{b}+q_{4}^{b}\right)} . \tag{19}
\end{equation*}
$$

Equations (17)-(19) are the recursion relations of the renormalization-group transformation. If we consider, simultaneously, the term related to J_{0} in Hamiltonian expression (1), then the recursion relations (17)-(19) of the renormalization-group transformation remain invariant in this case.

Furthermore, if we define three new parameters ω_{1}, ω_{2}, and ω_{3} as

$$
\begin{align*}
& \omega_{1}=\exp \left(-2 K_{\sigma}-2 K_{4}\right), \tag{20}\\
& \omega_{2}=\exp \left(-2 K_{s}-2 K_{4}\right), \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
\omega_{3}=\exp \left(-2 K_{s}-2 K_{\sigma}\right), \tag{22}
\end{equation*}
$$

then, from Eqs. (8)-(11), the following equations can be obtained:

$$
\begin{gather*}
\omega_{1}^{(i-1)}=\frac{\left(g_{1}^{b}-g_{2}^{b}-g_{3}^{b}+g_{4}^{b}\right)^{m}}{\left(g_{1}^{b}+g_{2}^{b}+g_{3}^{b}+g_{4}^{b}\right)^{m}} \tag{23}\\
\omega_{2}^{(i-1)}=\frac{\left(-g_{1}^{b}+g_{2}^{b}-g_{3}^{b}+g_{4}^{b}\right)^{m}}{\left(g_{1}^{b}+g_{2}^{b}+g_{3}^{b}+g_{4}^{b}\right)^{m}} \tag{24}
\end{gather*}
$$

and

$$
\begin{equation*}
\omega_{3}^{(i-1)}=\frac{\left(-g_{1}^{b}-g_{2}^{b}+g_{3}^{b}+g_{4}^{b}\right)^{m}}{\left(g_{1}^{b}+g_{2}^{b}+g_{3}^{b}+g_{4}^{b}\right)^{m}}, \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
& g_{1}=1+\omega_{1}^{(i)}-\omega_{2}^{(i)}-\omega_{3}^{(i)}, \tag{26}\\
& g_{2}=1-\omega_{1}^{(i)}+\omega_{2}^{(i)}-\omega_{3}^{(i)}, \tag{27}\\
& g_{3}=1-\omega_{1}^{(i)}-\omega_{2}^{(i)}+\omega_{3}^{(i)}, \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
g_{4}=1+\omega_{1}^{(i)}+\omega_{2}^{(i)}+\omega_{3}^{(i)} . \tag{29}
\end{equation*}
$$

Equations (23)-(25) are a different version of the recursion relations, in the new parameter space $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, of

TABLE I. Nontrivial fixed points with eigenvalues and critical exponents for $m=2$ and $b=2$.

Fixed point	$\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$	$\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$	ν	ϕ
I_{1}	$1,0.2956,0.2956$	$1.6786,0,0$	1.3383	
I_{2}	$0.2956,1,0.2956$	$1.6786,0,0$	1.3383	
I_{3}	$0.2956,0.2956,1$	$1.6786,0,0$	1.3383	
U_{1}	$0.2956,0,0$	$1.6786,0,0$	1.3383	
U_{2}	$0,0.2956,0$	$1.6786,0,0$	1.3383	
U_{3}	$0,0,0.2956$	$1.6786,0,0$	1.3383	
V_{1}	$0.2956,0.2956,0.08738$	$1.6786,1.6786,0.7044$	1.3383	1
V_{2}	$0.2956,0.08738,0.2956$	$1.6786,1.6786,0.7044$	1.3383	1
V_{3}	$0.08738,0.2956,0.2956$	$1.6786,1.6786,0.7044$	1.3383	1
Potts	$0.2203,0.2203,0.2203$	$1.8526,1.2778,1.2778$	1.1242	0.3976

the renormalization-group transformation. For simplicity and convenience hereafter we shall investigate fixed points, critical exponents, and phase diagram in this space and restrict ourselves to the ferromagnetic case, i.e., $0 \leqslant \omega_{1}, \omega_{2}, \omega_{3} \leqslant 1$.

III. FIXED POINTS AND PHASE DIAGRAMS

The recursion relations (23)-(25) of the renormalizationgroup transformation will produce all fixed points and result in the phase diagram for the anisotropic AT model on the family of the diamond-type hierarchical lattices for any given m and b. There are fifteen fixed points in total, including five trivial (completely stable) fixed points and ten nontrivial fixed points. As presented in Table I, these ten nontrivial fixed points can be divided into four sets according to their locations in the parameter space $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$. The first set I_{k} contains three fixed points at $\left(\omega_{I}, \omega_{I}, 1\right),\left(\omega_{I}, 1, \omega_{I}\right)$, and $\left(1, \omega_{I}, \omega_{I}\right)$, all of which are associated with only one relevant eigenvalue of the renormalization-group transformation matrix; the second set U_{k} includes three fixed points at $\left(\omega_{I}, 0,0\right),\left(0, \omega_{I}, 0\right)$, and $\left(0,0, \omega_{I}\right)$, all of which are related to one relevant eigenvalue as well; the third V_{k} consists of three fixed points at $\left(\omega_{I}, \omega_{I}, \omega_{I}^{2}\right),\left(\omega_{I}, \omega_{I}^{2}, \omega_{I}\right)$, and $\left(\omega_{I}^{2}, \omega_{I}, \omega_{I}\right)$, all of which are connected with two equal relevant eigenvalues; the fourth only contains one fixed point, i.e., the Potts fixed point, at $\left(\omega_{P}, \omega_{P}, \omega_{P}\right)$, which is associated with three relevant eigenvalues. We present as examples, two phase diagrams, i.e., Figs. 2 and 3, for the anisotropic AT model on the family of the diamond-type hierarchical lattices, which correspond to the cases of $m=2, b=2$, and $m=3, b=2$, respectively. Both of them indicate that the phase diagram consists of five phases, i.e., (a) the fully disordered paramagnetic phase P, in which $\langle s\rangle=0,\langle\sigma\rangle=0$, and $\langle s \sigma\rangle=0$; (b) the fully ordered ferromagnetic phase F, in which $\langle s\rangle \neq 0,\langle\sigma\rangle$ $\neq 0$, and $\langle s \sigma\rangle \neq 0$; (c) the partially ordered ferromagnetic phase F_{s}, in which $\langle s\rangle \neq 0,\langle\sigma\rangle=0$, and $\langle s \sigma\rangle=0$; (d) the partially ordered ferromagnetic phase F_{σ}, in which $\langle\sigma\rangle$ $\neq 0,\langle s\rangle=0$, and $\langle s \sigma\rangle=0$; and (e) the partially ordered ferromagnetic phase $F_{s \sigma}$, in which $\langle s \sigma\rangle \neq 0,\langle s\rangle=0$, and $\langle\sigma\rangle$ $=0$. The three-dimensional domains of attraction of these five trivial fixed points, located at $(0,0,0),(1,1,1),(1,0,0)$, $(0,1,0)$, and $(0,0,1)$, correspond to five phases F, P, F_{s}, F_{σ}, and $F_{s \sigma}$, respectively. Three two-dimensional critical
surfaces, corresponding to the domains of attraction of the three singly unstable fixed points of the set U_{k}, respectively, constitute the boundaries of the phase F. In the meantime, the boundaries of the phase P is composed of the other three two-dimensional critical surfaces, corresponding to the domains of attraction of the three singly unstable fixed points of the set I_{k}, respectively. These two-dimensional critical surfaces join along three lines, corresponding to the domains of attraction of the three doubly unstable fixed points of the set V_{k}, respectively. The three lines meet at the completely unstable fixed point, i.e., the Potts fixed point, located at $\left(\omega_{P}, \omega_{P}, \omega_{P}\right)$. At this point, the anisotropic AT model has the symmetry of a four-state Potts model.

It is essential to point out that both ω_{I} and ω_{P} are dependent on the values of m and b. As presented in Figs. 4 and 5, for a given b, both ω_{I} and ω_{P} increase monotonically as m

FIG. 2. Phase diagram for the anisotropic Ashkin-Teller model on the family of the diamond-type hierarchical lattices for $b=2$ and $m=2$, where $\omega_{I}=0.2956, \omega_{P}=0.2203$, and the symbol \square denotes the five trivial fixed points.

FIG. 3. Phase diagram for the anisotropic Ashkin-Teller model on the family of the diamond-type hierarchical lattices for $b=2$ and $m=3$, where $\omega_{I}=0.4859, \omega_{P}=0.3689$, and the symbol \square denotes the five trivial fixed points.
increases. When m becomes large, the curves may attain plateaux at well-defined values. But, for a given m, both ω_{I} and ω_{P} decrease monotonically as b increases. When b becomes large, the curves may also reach the stable levels at welldefined values. Thus, for different sets of m and b, one can obtain different sets of fixed points and different phase diagrams. As shown in Figs. 2 and 3, the phase diagram for the anisotropic AT model on the family of the diamond-type hierarchical lattices possesses very rich variations.

FIG. 4. Dependence of one of the coordinates, ω_{I}, of the nontrivial fixed points on the number of branches m, and the number of bonds per branch b of the generator of the family of the diamondtype hierarchical lattices.

FIG. 5. Dependence of one of the coordinates, ω_{P}, of the Potts fixed point on the number of branches m, and the number of bonds per branch b of the generator of the family of the diamond-type hierarchical lattices.

In general, the above results that the phase diagram for the anisotropic AT model on the family of the diamond-type hierarchical lattices consists of five phases and fifteen fixed points are consistent with those of Refs. [17,18], where the anisotropic AT model on the square lattice has been investigated, as well as with those obtained by Bezerra et al. [26] in the investigations of the anisotropic AT model on a kind of self-dual hierarchical lattice. However, in the phase diagram for the case of $d_{f}=3$, e.g., $b=2$ and $m=4$, we cannot produce the first-order transition line(s), which can be found in Refs. [15,19], concerning the AT model in three dimensions. With regard to the locations of the nontrivial fixed points, it can be found that $\omega_{I}=1 /(1+\sqrt{2}), \omega_{P}=1 /(1+\sqrt{4})$ in Ref. [17], $\omega_{I}=0.422, \omega_{P}=0.341$ in Ref. [18], and $\omega_{I}=\sqrt{2}-1$, $\omega_{P}=1 / 3$ in Ref. [26]. Because of the dependence of ω_{I} and ω_{P} on the parameters m and b of the hierarchical lattices, we only take the case of $b=2$ as an example. In this case (see Figs. 4 and 5), $\omega_{I}=0.2956, \omega_{P}=0.2203$ when $m=2$, i.e., $d_{f}=2 ; \omega_{I}=0.4859, \omega_{P}=0.3689$ when $m=3 ; \omega_{I}=0.5933$, $\omega_{P}=0.4638$ when $m=4$. Therefore, one can find that the results of ω_{I} and ω_{P} for the case of $b=2$ and $m=3$ are comparatively close to those already known in Refs. [17,18,26].

IV. CRITICAL EXPONENTS

Using the recursion relations (23)-(25) of the renormalization-group transformation, one can calculate the correlation length critical exponent ν and the crossover exponent ϕ from the scaling factor b and the relevant eigenvalues for any given m and b [29-31]. It can be found that two sets I_{k} and U_{k} of the nontrivial fixed points are in the same case as the single identical relevant eigenvalue, thus all of them have the same correlation length critical exponent ν as the Ising universality class [27]. Having two equal relevant eigenvalues identical with that of the former two sets

FIG. 6. Variations of the correlation length critical exponent ν_{I} with the number of branches m, and the number of bonds per branch b of the generator of the family of the diamond-type hierarchical lattices.
I_{k} and U_{k}, the set V_{k} of the nontrivial fixed points are associated with the same correlation length critical exponent ν as well as the only one crossover exponent ϕ equal to 1 . As far as the Potts fixed point is concerned, it is related to three relevant eigenvalues, among which the two smaller ones are identical with each other, hence it possesses the correlation length critical exponent ν which is identical with that of the four-state Potts model on the same lattice, as well as two equal crossover exponents ϕ. As an example, the results in the case of $b=2$ and $m=2$ are presented in Table I.

It is interesting to investigate the variations of the critical exponents ν and ϕ with b, m, and d_{f}, which may be helpful to the discussion about the universality class. For the sake of convenience, let ν_{P} and ϕ_{P} denote the correlation length critical exponent and the crossover exponent associated with the Potts fixed point, respectively, and ν_{I} represent the correlation length critical exponent associated with the other

FIG. 7. The correlation length critical exponent ν_{I} vs the fractal dimension d_{f} of the family of the diamond-type hierarchical lattices.

TABLE II. Different critical exponents for the same fractal dimension d_{f} but different m and b, and the invariance of the crossover exponent ϕ_{P} under the interchange of the values of m and b.

	$d_{f}=1.5$				$d_{f}=3$		
m	2	3	4	4	9	16	
b	4	9	16	2	3	4	
v_{p}	1.8337	1.8749	1.9135	0.9168	0.9374	0.9567	
v_{I}	2.1296	2.1597	2.1886	1.0648	1.0799	1.0943	
ϕ_{p}	0.5054	0.5133	0.5206	0.5054	0.5133	0.5206	

nontrivial fixed points. As shown in Fig. 6, for a given b, ν_{I} decreases monotonically as m increases. One can observe a convergence towards saturation values when m becomes large. However, for a given m, ν_{I} increases monotonically as b increases. With d_{f} increasing, ν_{I} decreases monotonically, but ν_{I} is not completely decided by d_{f}, ν_{I} has some difference for the same d_{f} but different b or m (see Fig. 7 and Table II). As presented in Fig. 8, for a given b, ν_{P} decreases monotonically as m increases, but there is an exception for $m \geqslant 7$ when $b=2$. Also, one can observe a convergence towards saturation values when m becomes large. For a given m, ν_{P} increases monotonically as b increases, but there is also an exception for $b=2$ when $m \geqslant 12$. With d_{f} increasing, ν_{P} decreases monotonically except for the case of $b=2$, but ν_{P} is not fully determined by d_{f}, ν_{P} has some difference for the same d_{f} but different b or m (see Fig. 9 and Table II). As shown in Fig. 10, for a given $b(m)$, with $m(b)$ increasing, ϕ_{P} decreases first, reaches a minimum at $m \leqslant b(b \leqslant m)$, and then increases except for the case when $b=2(m=2)$ in which case ϕ_{P} increases monotonically. We also find that ϕ_{P} is invariant under the interchange of the values of m and b (see Table II). For a given $b(m)$, with d_{f} increasing (decreasing), ϕ_{P} decreases first, comes to a minimum, and then increases except for the case when $b=2(m=2)$ in which

FIG. 8. Variations of the correlation length critical exponent ν_{P} with the number of branches m, and the number of bonds per branch b of the generator of the family of the diamond-type hierarchical lattices.

FIG. 9. The correlation length critical exponent ν_{P} vs the fractal dimension d_{f} of the family of the diamond-type hierarchical lattices.
ϕ_{P} increases monotonically. But ϕ_{P} is not completely decided by d_{f}, ϕ_{P} has some difference in the case of the same d_{f} but different b or m (see Fig. 11 and Table II). It can be concluded from the above investigations that the critical exponents (the correlation length critical exponent ν and the crossover exponent ϕ) for the anisotropic AT model on the family of the diamond-type hierarchical lattices not only depend on the fractal dimension d_{f} but also the concrete geometrical parameters, i.e., b and m, of the lattices.

For the square lattice, the exact values of the correlation length critical exponent are $\nu_{I}=1$ and $\nu_{P}=2 / 3$ for the Ising and Potts universality class, respectively [14]. In addition, for a kind of self-dual hierarchical lattice, Bezerra et al. [26] have obtained that $\nu_{I}=1.149$ and $\nu_{P}=0.948$. Due to reasons that both ν_{I} and ν_{P} are dependent on the parameters m and b of the hierarchical lattices, we only take the case of $b=2$ as

FIG. 10. Variations of the crossover critical exponent ϕ_{P} with the number of branches m, and the number of bonds per branch b of the generator of the family of the diamond-type hierarchical lattices.

FIG. 11. The crossover critical exponent ϕ_{P} vs the fractal dimension d_{f} of the family of the diamond-type hierarchical lattices.
an example. In this case (see Figs. 6 and 8), $\nu_{I}=1.3383$, $\nu_{P}=1.1242$ when $m=2$, i.e., $d_{f}=2 ; \nu_{I}=1.1227, \nu_{P}$ $=0.9534$ when $m=3 ; \ldots ; \nu_{I}=1.0276, \nu_{P}=0.9062$ when $m=6 ; \nu_{I}=1.0201, \nu_{P}=0.9083$ when $m=7$. Therefore, one can find that the results of ν_{I} and ν_{P} for the cases of $b=2$, $m=6$ and $b=2, m=3$ are comparatively close to those of Ref. [14] and Ref. [26], respectively.

V. CONCLUSION AND DISCUSSION

In this paper, by means of the transfer-matrix method and the real-space renormalization-group transformation, we study the phase transitions of the anisotropic Ashkin-Teller model on a family of diamond-type hierarchical lattices. It can be found that for different sets of m and b, the phase diagram for the ferromagnetic case consists of five phases, i.e., the fully disordered paramagnetic phase P, the fully ordered ferromagnetic phase F, and three partially ordered ferromagnetic phases F_{s}, F_{σ}, and $F_{s \sigma}$, as well as ten nontrivial fixed points. The correlation length critical exponents and the crossover exponents are also calculated. In addition, as we know, universality is one of the three pillars of modern critical phenomena [32], and it depends on a number of factors. On a Bravais lattice, the universality criteria are dimensionality and symmetry. However, through the investigations of the variations of the critical exponents with the fractal dimension d_{f}, the number of branches m, as well as the number of bonds per branch b of the generator of the hierarchical lattices, we have shown the difficulties in searching for the complete set of universality criteria on a hierarchical lattice. This problem deserves further attention.

ACKNOWLEDGMENTS

J.-X.L. would like to thank Dr. W. A. Guo and Dr. X. M. Kong for their valuable discussions. This work was supported by the National Natural Science Foundation of China under Grant No. 10175008.
[1] J. Ashkin and E. Teller, Phys. Rev. 64, 178 (1944).
[2] C. Fan, Phys. Lett. 39A, 136 (1972).
[3] F.J. Wegner, J. Phys. C 5, L131 (1972).
[4] P. Bak, P. Kleban, W.N. Unertl, J. Ochab, G. Akinci, N.C. Bartelt, and T.L. Einstein, Phys. Rev. Lett. 54, 1539 (1985).
[5] J. Chahine, J.R. Drugowich de Felício, and N. Caticha, J. Phys. A 22, 1639 (1989).
[6] S. Wiseman and E. Domany, Phys. Rev. E 48, 4080 (1993).
[7] S. Wiseman and E. Domany, Phys. Rev. E 51, 3074 (1995).
[8] G. Kamieniarz, P. Kozlowski, and R. Dekeyser, Phys. Rev. E 55, 3724 (1997).
[9] L.P. Kadanoff, Phys. Rev. Lett. 39, 903 (1977).
[10] H.J.F. Knops, Ann. Phys. (N.Y.) 128, 448 (1980).
[11] M.P.M. den Nijs, Phys. Rev. B 23, 6111 (1981).
[12] A.M. Mariz, C. Tsallis, and P. Fulco, Phys. Rev. B 32, 6055 (1985).
[13] J.A. Plascak and F.C. Sá Barreto, J. Phys. A 19, 2195 (1986).
[14] R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982).
[15] R.V. Ditzian, J.R. Banavar, G.S. Grest, and L.P. Kadanoff, Phys. Rev. B 22, 2542 (1980).
[16] F.Y. Wu and K.Y. Lin, J. Phys. C 7, L181 (1974).
[17] E. Domany and E.K. Riedel, Phys. Rev. B 19, 5817 (1979).
[18] M. Badehdah, S. Bekhechi, A. Benyoussef, and M. Touzani, Physica B 291, 394 (2000).
[19] S. Bekhechi, A. Benyoussef, A. Elkenz, B. Ettaki, and M. Loulidi, Physica A 264, 503 (1999).
[20] A.N. Berker and S. Ostlund, J. Phys. C 12, 4961 (1979).
[21] M. Kaufman and R.B. Griffiths, Phys. Rev. B 24, 496 (1981).
[22] A. Efrat and M. Schwartz, Phys. Rev. E 63, 036124 (2001).
[23] A. Efrat, Phys. Rev. E 63, 066112 (2001).
[24] F.D. Nobre and E.M.F. Curado, Phys. Rev. E 66, 036107 (2002).
[25] J. Török, S. Krishnamurthy, J. Kertész, and S. Roux, Phys. Rev. E 67, 026108 (2003).
[26] C.G. Bezerra, A.M. Mariz, J.M. de Araújo, and F.A. da Costa, Physica A 292, 429 (2001).
[27] Z.R. Yang, Phys. Rev. B 38, 728 (1988).
[28] Y. Qin and Z.R. Yang, Phys. Rev. B 43, 8576 (1991).
[29] J.R. Melrose, J. Phys. A 16, 3077 (1983).
[30] B. Hu, Phys. Rev. Lett. 55, 2316 (1985).
[31] C. Tsallis and A.C.N. de Magalhães, Phys. Rep. 268, 305 (1996).
[32] H.E. Stanley, Rev. Mod. Phys. 71, S358 (1999).

[^0]: *Electronic address: jianxinle@yahoo.com

